Extensions 1→N→G→Q→1 with N=C22 and Q=D5⋊C8

Direct product G=N×Q with N=C22 and Q=D5⋊C8
dρLabelID
C22×D5⋊C8160C2^2xD5:C8320,1587

Semidirect products G=N:Q with N=C22 and Q=D5⋊C8
extensionφ:Q→Aut NdρLabelID
C221(D5⋊C8) = C5⋊C88D4φ: D5⋊C8/C5⋊C8C2 ⊆ Aut C22160C2^2:1(D5:C8)320,1030
C222(D5⋊C8) = D10.11M4(2)φ: D5⋊C8/C4×D5C2 ⊆ Aut C2280C2^2:2(D5:C8)320,1091

Non-split extensions G=N.Q with N=C22 and Q=D5⋊C8
extensionφ:Q→Aut NdρLabelID
C22.1(D5⋊C8) = Dic10.C8φ: D5⋊C8/C5⋊C8C2 ⊆ Aut C221608C2^2.1(D5:C8)320,1063
C22.2(D5⋊C8) = C20.10M4(2)φ: D5⋊C8/C4×D5C2 ⊆ Aut C22804C2^2.2(D5:C8)320,229
C22.3(D5⋊C8) = (C22×C4).F5φ: D5⋊C8/C4×D5C2 ⊆ Aut C22160C2^2.3(D5:C8)320,252
C22.4(D5⋊C8) = C5⋊(C23⋊C8)φ: D5⋊C8/C4×D5C2 ⊆ Aut C2280C2^2.4(D5:C8)320,253
C22.5(D5⋊C8) = D5⋊M5(2)φ: D5⋊C8/C4×D5C2 ⊆ Aut C22804C2^2.5(D5:C8)320,1053
C22.6(D5⋊C8) = C20.34M4(2)φ: D5⋊C8/C4×D5C2 ⊆ Aut C22160C2^2.6(D5:C8)320,1092
C22.7(D5⋊C8) = Dic5⋊C16central extension (φ=1)320C2^2.7(D5:C8)320,223
C22.8(D5⋊C8) = C40.C8central extension (φ=1)320C2^2.8(D5:C8)320,224
C22.9(D5⋊C8) = D10⋊C16central extension (φ=1)160C2^2.9(D5:C8)320,225
C22.10(D5⋊C8) = C10.M5(2)central extension (φ=1)320C2^2.10(D5:C8)320,226
C22.11(D5⋊C8) = C10.(C4⋊C8)central extension (φ=1)320C2^2.11(D5:C8)320,256
C22.12(D5⋊C8) = C2×D5⋊C16central extension (φ=1)160C2^2.12(D5:C8)320,1051
C22.13(D5⋊C8) = C2×C8.F5central extension (φ=1)160C2^2.13(D5:C8)320,1052
C22.14(D5⋊C8) = C2×C4×C5⋊C8central extension (φ=1)320C2^2.14(D5:C8)320,1084
C22.15(D5⋊C8) = C2×D10⋊C8central extension (φ=1)160C2^2.15(D5:C8)320,1089
C22.16(D5⋊C8) = C2×Dic5⋊C8central extension (φ=1)320C2^2.16(D5:C8)320,1090

׿
×
𝔽